

Testing without excuses
Diligent but routine pieces of work for JUnit should be the computer’s task.

By Andreas Braig and Steffen Gemkow

„Why wasn’t this tested before?“ This question often arises shortly before a deadline. The answer: because
testing was not easy enough. Before programmers get infected with testing using JUnit, the additional effort is
sometimes used as an excuse. JUnitDoclet is the tool to take over the burden of creating and maintaining unit
tests. Suddenly all the excuses don’t count any longer.

Unit tests and test-driven development increase the reliability of software and the programmers

confidence in her own code significantly. Kent Beck and Erich Gamma created the quasi-standard for
automated unit tests in Java, JUnit [1]. On the one hand the implementation using JUnit is really simple, on
the other hand starting is still laborious. Prior to writing the actual test, the class skeleton of the TestCase has
to be hammered in. Each time you are adding or changing methods the appropriate test methods need to be
adapted. These chores should not be used any longer as an excuse against unit tests. That's why the authors
developed JUnitDoclet [2].

Mode of operation
JUnitDoclet works as a plug-in for SUN’s JavaDoc tool but instead of generating HTML documentation it

generates test classes and methods. For every public method of every class in the application a JUnit
TestCase is created. In addition all TestCases of a package and its subpackages are added to a JUnit
TestSuite. Compared to similar functions and extensions of development environments JUnitDoclet has a
couple of advantages:
• Independence of IDEs and capability for automation,
• Generation of test classes and methods for complete package hierarchies (including TestSuites),
• Incremental generation through merging with existing tests and updating after simple refactorings,
• Adaptability according to users needs through templates,
• Availability of the source code.

Usage
We will take an example from the programming contest „The Way Out“ [3] to demonstrate working with

JUnitDoclet. The class SpaceShip in listing 1 represents a spaceship in a discrete universe. Position, speed,
direction and energy usage can take integer values only. The method calculateStep calculates the speed and
direction of the next movement while the method makeStep executes it, i.e. calculates the next position.
Taking this simple and incomplete implemented version, we will generate the TestCase with the following
command:

javadoc -doclet com.objectfab.tools.junitdoclet.JUnitDoclet -sourcepath .\src -d .\junit de.thewayout.two.SpaceShip

The result is shown in listing 3 where a test method was generated for every public method while only the
lines printed in italics are implemented manually. Additionally an instance of the class to be tested is created
in the method setUp, which is then available in every method. For the accessor methods of the attributes
speed, direction and position combined test methods are generated containing a type-dependent
implementation suggestion. The method testVault being generated for every test class will be mentioned later
in the article.

Now JUnitDoclet has done the chore and the developer may start implementing unit tests. The numerous
comments like "// JUnitDoclet begin ... " und "// JUnitDoclet end ... " mark protected areas which JUnitDoclet
won’t overwrite during future invocations. Own source code like the lines printed in italics in listing 3 has to be
added within these areas.

Refactoring
Everything changes, that holds true for software as well. During development countless small and large

refactorings that may affect tests are done to classes of any application. Taking a close look on the affected
classes all refactorings can be reduced to the following changes:

• Adding methods:

In this trivial case a new test method is created.
• Deleting and renaming methods:

The corresponding test method is not generated during the next run of JUnitDoclet. The test
implementation inside "// JUnitDoclet begin ... " and "// JUnitDoclet end ... " is moved to the method
testVault and thus saved from being lost. In case the method was renamed a new test method is
generated. The implementation can be moved manually from the method testVault to this place.

• Changing signatures and overloading methods:
In this case JUnitDoclet doesn't change anything because methods are identified be their names only.

package de.thewayout.two;

public class SpaceShip
{
 private int direction = 0;
 private long speed = 0, power = 0;
 private long[] position = new long[] {0, 0, 0};

 public int getDirection() { return direction; }
 public void setDirection(int newDirection) {
 direction = newDirection;
 }

 public long getSpeed() { return speed; }
 public void setSpeed(long newSpeed) {
 speed = newSpeed;
 }

 public long[] getPosition() {return position; }
 public void setPosition(long[] newPosition) {
 position[0] = newPosition[0];
 position[1] = newPosition[1];
 position[2] = newPosition[2];
 }

 public long getPowerConsumed() {return power; }
 public void consumePower(long value) {

 power += value;

 }

 public int calculateStep() {
 // Berechne Geschwindigkeit und Richtung
 // für den nächsten Schritt.
 }

 public void makeStep() {
 // Rufe calculateStep() auf und
 // bewege SpaceShip für jeden Punkt
 // Geschwindigkeit ein Feld weiter.
 }
}

package de.thewayout.two;

public class SpaceShip
{
 private int direction = 0;
 private long speed = 0, power = 0;
 private long[] position = new long[] {0, 0, 0};
 private Steering steering = null;

 public Steering getSteering(){return steering;}
 public void setSteering(Steering theSteering){
 steering = theSteering;
 }

 public int getDirection() { return direction; }
 public void setDirection(int newDirection) {
 direction = newDirection;
 }

 public long getSpeed() { return speed; }
 public void setSpeed(long newSpeed) {
 speed = newSpeed;
 }

 public long[] getPosition() {return position; }
 public void setPosition(long[] newPosition) {
 position[0] = newPosition[0];
 position[1] = newPosition[1];
 position[2] = newPosition[2];
 }

 public long getPowerConsumed() {return power; }
 public void consumePower(long value,
 String cause) {
 power += value;
 System.out.println(power + " : " + cause);
 }

 public void makeStep() {
 // Rufe calculateStep() auf und
 // bewege SpaceShip für jeden Punkt
 // Geschwindigkeit ein Feld weiter.
 }
}

Listing 1: First concept of the class SpaceShip Listing 2: Updated version of the class SpaceShip

In the example the method calculateStep is moved to a new class Steering. This is done by deleting the

method in the class SpaceShip and adding a new attribute of the type Steering including accessor methods.
Next, the signature of the method consumePower is changed by adding a parameter, which states the reason
for the energy consumption (e.g. propulsion system, life support or energy shields). Listing 2 shows the new
version of the class SpaceShip and listing 4 the changes within the test classes after running JUnitDoclet.
Aside from adding methods the test classes won’t compile, because the implementations expect the original
version of the applications class. Comfortable development environments are able to rename methods and
change method signatures throughout the whole source code. Otherwise a careful and global find and replace
is required. The important fact is that implemented tests won’t get lost. Without tight integration into an IDE,
the most feasible solution is moving the test implementation to the method testVault and copying it manually
to the correct test method afterwards. JUnitDoclet behaves defensive and prints out warnings whenever a test
implementation is moved to the method testVault. In case a warning is overlooked and the test class is
compileable despite the changes, the tests are executed and may fail. (Because of the new marker style in
JUnitDoclet 1.0 tools like IntelliJ IDEA can refactor the markers when renaming methods too. The test code
will be placed at the correct position right away, instead of temporary moving it to the method testVault.)

 public void testSetGetPosition() throws Exception {
 // JUnitDoclet begin method setPosition getPosition
 long[][] tests = {null, new long[]{}};
 for (int i=0; i<tests.length; i++) {
 spaceship.setPosition(tests[i]);
 assertEquals(tests[i], spaceship.getPosition());
 }
 // JUnitDoclet end method setPosition getPosition
 }

 public void testGetPowerConsumed() throws Exception {
 // JUnitDoclet begin method getPowerConsumed
 // JUnitDoclet end method getPowerConsumed
 }

 public void testConsumePower() throws Exception {
 // JUnitDoclet begin method consumePower
 long powerBefore = spaceship.getPowerConsumed();
 spaceship.consumePower(100);
 assertEquals("Unexpected power consumption",
 powerBefore + 100, spaceship.getPowerConsumed());
 // JUnitDoclet end method consumePower
 }

 public void testCalculateStep() throws Exception {
 // JUnitDoclet begin method calculateStep
 long[] p1, p2;
 p1= new long[] { 100, 100, 100 };
 spaceship.setPosition(p1);
 spaceship.setSpeed(1);
 spaceship.calculateStep();
 spaceship.goAhead();
 p2 = spaceship.getPosition();
 assertEquals("Moved unexpected distance.", 1,
 Math.abs(p2[0] - p1[0] +
 p2[1] - p1[1] +
 p2[2] - p1[2]));
 // JUnitDoclet end method calculateStep
 }

 public void testMakeStep() throws Exception {
 // JUnitDoclet begin method makeStep
 // JUnitDoclet end method makeStep
 }

 public void testVault() throws Exception {
 // JUnitDoclet begin method testcase.testVault
 // JUnitDoclet end method testcase.testVault
 }

 public static void main(String[] args) {
 // JUnitDoclet begin method testcase.main
 junit.textui.TestRunner.run(SpaceShipTest.class);
 // JUnitDoclet end method testcase.main
 }
}

package de.thewayout.two;
import junit.framework.TestCase;
// JUnitDoclet begin import
// JUnitDoclet end import

public class SpaceShipTest
// JUnitDoclet begin extends_implements
 extends TestCase
// JUnitDoclet end extends_implements
{
 // JUnitDoclet begin class
 SpaceShip spaceship = null;
 // JUnitDoclet end class

 public SpaceShipTest(String name) {
 // JUnitDoclet begin method SpaceShipTest
 super(name);
 // JUnitDoclet end method SpaceShipTest
 }
 public SpaceShip createInstance() {
 // JUnitDoclet begin method testcase.createInstance
 return new SpaceShip();
 // JUnitDoclet end method testcase.createInstance
 }
 protected void setUp() throws Exception {
 // JUnitDoclet begin method testcase.setUp
 super.setUp();
 spaceship = createInstance();
 // JUnitDoclet end method testcase.setUp
 }
 protected void tearDown() throws Exception {
 // JUnitDoclet begin method testcase.tearDown
 spaceship = null;
 super.tearDown();
 // JUnitDoclet end method testcase.tearDown
 }
 public void testSetGetDirection() throws Exception {
 // JUnitDoclet begin method setDirection getDirection
 int[] tests = {Integer.MIN_VALUE, -1, 0, 1,
 Integer.MAX_VALUE};
 for (int i=0; i<tests.length; i++) {
 spaceship.setDirection(tests[i]);
 assertEquals(tests[i],spaceship.getDirection());
 }
 // JUnitDoclet end method setDirection getDirection
 }
 public void testSetGetSpeed() throws Exception {
 // JUnitDoclet begin method setSpeed getSpeed
 long[] tests = {Long.MIN_VALUE, -1, 0, 1,
 Long.MAX_VALUE};
 for (int i=0; i<tests.length; i++) {
 spaceship.setDirection(tests[i]);
 assertEquals(tests[i],spaceship.getDirection());
 }
 // JUnitDoclet end method setSpeed getSpeed
 }

Listing 3: Generated test class SpaceShiptTest

Integration
To unfold its full power JUnitDoclet needs to

integrate easily and smoothly with the developers
other tools. Using it in a script for the popular build
tool ANT [4] is shown in listing 5. Calling the target
junitdoclet all test classes are generated, with
junitcompile compiled and with junittest executed.
JUnitDoclet is called here for whole package
hierarchies. Thereby it creates TestSuites for
packages combining all contained TestCases and
TestSuites of subpackages. This assures that global
test runs execute all TestCases. Otherwise an
exisiting test, which was accidentally not included in
a TestSuite, could easily make someone think
everything is alright. Of course the same result can
be achieved without ANT using a batch file.

Special care is required in combination with
version control systems. JUnitDoclet always creates
all TestCases and TestSuites. Possibly another
developer has already implemented and checked in
some TestCases colliding with locally created
versions. The authors recommend checking in new
classes and packages always together with their
appropriate TestCases and TestSuites, respectively.

Customizing
In every project there are different notions how

unit tests should be implemented. This ranges from
source code conventions over different versions of
JUnit to own extensions of the JUnit framework.
Therefore JUnitDoclet offers a template-based
mechanism to adapt the code being generated to
your own needs. For special requirements the
source code is available.

Already existing TestCases can be used along with newly generated ones without any problems.
JUnitDoclet does not overwrite files, which were not generated by itself and TestSuites contain protected
areas where own TestCases may be added.

Summary
Using JUnitDoclet a lot of test methods can be generated quickly for existing and new projects. JUnit

counts every test method as test case, but this number says nothing about the gained test coverage since
most of the test cases are empty and can’t fail. Only the manually implemented test cases may be taken into
account to estimate test coverage. JUnitDoclet makes it easier to concentrate on the actual work – to
implement test cases – but cannot take over this burden.

The first serious field test of JUnitDoclet was in the programming contest "The Way Out" where we
provided it to all participants. As expected, experience shows that implementing unit tests is clearly faster with
JUnitDoclet. The developer’s flow of thoughts is not interrupted when switching between the application and
unit tests, because he does not have to implement the test class bodies. Both leads to more fun when
implementing unit tests und therefore higher test coverage and test quality.

 Listing 4: SpaceShiptTest after rerunning JUnitDoclet

package de.thewayout.two;
import junit.framework.TestCase;
// JUnitDoclet begin import
// JUnitDoclet end import

public class SpaceShipTest {

// ... no changes ...

 public void testSetGetSteering() throws Exception {
 // JUnitDoclet begin method setSteering getSteering
 Steering[] tests = {null, new Steering()};
 for (int i=0; i<tests.length; i++) {
 spaceship.setSteering(tests[i]);
 assertEquals(tests[i], spaceship.getSteering());
 }
 // JUnitDoclet end method setSteering getSteering
 }

// ... no changes ...

 public void testConsumePower() throws Exception {
 // JUnitDoclet begin method consumePower
 long powerBefore = spaceship.getPowerConsumed();
 spaceship.consumePower(100);
 assertEquals("Unexpected power consumption",
 powerBefore + 100,
 spaceship.getPowerConsumed());
 // JUnitDoclet end method consumePower
 }

// ... no changes ...

 public void testVault() throws Exception {
 // JUnitDoclet begin method testcase.testVault
// JUnitDoclet begin method calculateStep
 long[] p1, p2;
 p1 = new long[] { 100, 100, 100 };
 spaceship.setPosition(p1);
 spaceship.setSpeed(1);
 spaceship.calculateStep();
 spaceship.goAhead();
 p2 = spaceship.getPosition();
 assertEquals("Moved unexpected distance.", 1,
 Math.abs(p2[0] - p1[0] +
 p2[1] - p1[1] +
 p2[2] - p1[2]));
// JUnitDoclet end method calculateStep
 // JUnitDoclet end method testcase.testVault
 }

// ... no changes ...

}

To gain this experience yourself you can extend
the class SpaceShip with methods to accelerate and
brake and their appropriate test methods checking
the energy consumption. The sample source code is
available for downloading at [2].

About the Authors
Andreas Braig and Steffen Gemkow are working

as consultants running their own Company:
ObjectFab GmbH. Focussed on serverside Java and
related technologies they provide support in many
areas of software development, from developing to
coaching, from reviews to methodology. Please visit
the website [5] to learn more.

Links
[1] http://www.junit.org/
[2] http://www.junitdoclet.org/
[3] http://www.thewayout.de/
[4] http://jakarta.apache.org/ant/
[5] http://www.objectfab.de/

<project name="junitdoclet-sample" default="all">
...
 <target name="junitdoclet" depends="compile">
 <javadoc
 packagenames = " de.thewayout.two.*"
 sourcepath = "./src"
 defaultexcludes = "yes"
 doclet =
 "com.objectfab.tools.junitdoclet.JUnitDoclet"
 docletpathref = "classpath_default"
 additionalparam = "-d ./junit -buildall">
 <classpath refid = "classpath_default" />
 </javadoc>
 </target>

 <target name="junitcompile" depends="junitdoclet">
 <javac srcdir="./junit" destdir="./classes">
 <classpath refid="classpath_default" />
 </javac>
 </target>

 <target name="junittest" depends="junitcompile">
 <junit printsummary="no" fork="yes"
 haltonfailure="no">
 <formatter type="plain" usefile="no"/>
 <test name=" de.thewayout.two.TwoSuite"/>
 <classpath refid="classpath_default" />
 </junit>
 </target>
...
</project>

Listing 5: Integration into an ant build script

